IILINOIS

Solving Complex Quadratic Equations with Full-rank Random Gaussian Matrices

Shuai Huang*, Sidharth Gupta*, Ivan Dokmanić

* Equal contribution. Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, USA

System of quadratic equations

Quadratic measurements obtained with high-rank measurement matrices arise in applications such as unassigned distance geometry problem

Most prior works focus on rank-1 psd measurement matrices or real measurements.
Measurement Model:

$$
\begin{equation*}
y_{i}=\boldsymbol{x}^{*} \boldsymbol{A}_{i} \boldsymbol{x}, \quad i=1, \cdots, m \tag{1}
\end{equation*}
$$

- $\boldsymbol{x} \in \mathbb{C}^{n}$ is the complex signal
$y_{i} \in \mathbb{C}$ is the i-th complex quadratic measurement
$\boldsymbol{A}_{i} \in \mathbb{C}^{n \times n}$ is the i-th complex random Gaussian measurement
matrix.

Problem formulation

We minimize the following objective function $f(\boldsymbol{z})$:

$$
\begin{equation*}
f(\boldsymbol{z})=\frac{1}{m} \sum_{i=1}^{m}\left|\boldsymbol{z}^{*} \boldsymbol{A}_{i} \boldsymbol{z}-y_{i}\right|^{2}, \tag{2}
\end{equation*}
$$

using gradient descent:

$$
\begin{equation*}
\boldsymbol{z}^{(t+1)}=\boldsymbol{z}^{(t)}-\eta \nabla f(\boldsymbol{z}), \tag{3}
\end{equation*}
$$

where $\eta>0$ is the step size
Nonconvex optimization problem
$\boldsymbol{x} e^{j \phi}$ is a global minimum solution for all $\phi \in[0,2 \pi)$.
The distance between the recovered z and a global minimum solution \boldsymbol{x} is

$$
\begin{equation*}
\operatorname{dist}(\boldsymbol{z}, \boldsymbol{x})=\min _{\phi \in[0,2 \pi}\left\|\boldsymbol{z}-\boldsymbol{x} e^{\boldsymbol{j} \phi}\right\|_{2} \tag{4}
\end{equation*}
$$

Figure 1: A good initialization is needed to solve a nonconvex optimization problem via gradient descent.

When $m \geq C n$ for some sufficiently large constant C, for all $\boldsymbol{p}, \boldsymbol{q} \in \mathbb{C}^{n}$ satisfying $\|\boldsymbol{p}\|_{2}=1,\|\boldsymbol{q}\|_{2}=1$ and every $\nu>0$, the following

$$
\begin{equation*}
\left\|\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{p}^{*} \boldsymbol{A}_{i}^{*} \boldsymbol{q} \cdot \boldsymbol{A}_{i}-2 \boldsymbol{q} \boldsymbol{p}^{*}\right\| \leq \nu \tag{8}
\end{equation*}
$$

holds with high probability.

Main theorem

When $m \geq C$ n for some sufficiently large constant C,
(1) There exists a choice of $1>\nu>0,1>\rho>0, \alpha>0, \beta>0$ such that $R C(\alpha, \beta, \rho)$ holds on $E(\rho)$ with high probability.
${ }_{2}$ Furthermore, if the step size $0<\eta \leq \frac{2}{\beta}$, the gradient descent with the spectral initializer $\boldsymbol{z}^{(0)}$ converges linearly to \boldsymbol{x}

$$
\operatorname{dist}\left(\boldsymbol{z}^{(t)}, \boldsymbol{x}\right) \leq\left(\sqrt{1-\frac{2 \eta}{\alpha}}\right)^{t} \rho \cdot\|\boldsymbol{x}\|_{2}
$$

with high probability.

Experimental results

Figure 2: Left: dist $\left(\boldsymbol{z}^{(0)}, \boldsymbol{x}\right)$; Right: Phase transition of the success rate

Figure 3: Recovery of the UIUC logo.

References

[1] Netrapalli et al., Phase retrieval using alternating minimization, IEEE Trans. Signal Process., 2015
[2] Candès et al., Phase retrieval via Wirtinger flow: Theory and algorithms, IEEE Trans. Inf. Theory, 2015
[3] S. Huang et al., Solving Complex Quadratic Systems with Full-Rank Random Matrices, arXiv, vol.abs/1902.05612, 2019

