

Solving Complex Quadratic Equations with Full-rank Random Gaussian Matrices

Shuai Huang*, Sidharth Gupta*, Ivan Dokmanić

* Equal contribution. Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, USA

System of quadratic equations

- Quadratic measurements obtained with high-rank measurement matrices arise in applications such as unassigned distance geometry problem.
- Most prior works focus on rank-1 psd measurement matrices or real measurements.
- Measurement Model:

$$y_i = \boldsymbol{x}^* \boldsymbol{A}_i \boldsymbol{x}, \quad i = 1, \cdots, m.$$
 (1)

- $m{x} \in \mathbb{C}^n$ is the complex signal.
- $y_i \in \mathbb{C}$ is the *i*-th complex quadratic measurement.
- $oldsymbol{A}_i \in \mathbb{C}^{n imes n}$ is the i-th complex random Gaussian measurement matrix.

Problem formulation

We minimize the following objective function f(z):

$$f(z) = \frac{1}{m} \sum_{i=1}^{m} |z^* A_i z - y_i|^2$$
, (2)

using gradient descent:

$$\boldsymbol{z}^{(t+1)} = \boldsymbol{z}^{(t)} - \eta \nabla f(\boldsymbol{z}),$$
 (3)

where $\eta > 0$ is the step size.

- Nonconvex optimization problem.
- $xe^{j\phi}$ is a global minimum solution for all $\phi \in [0, 2\pi)$.
- The distance between the recovered $oldsymbol{z}$ and a global minimum solution $oldsymbol{x}$ is

$$\operatorname{dist}(\boldsymbol{z}, \boldsymbol{x}) = \min_{\phi \in [0, 2\pi)} \|\boldsymbol{z} - \boldsymbol{x} e^{\boldsymbol{j}\phi}\|_{2}$$
 (4)

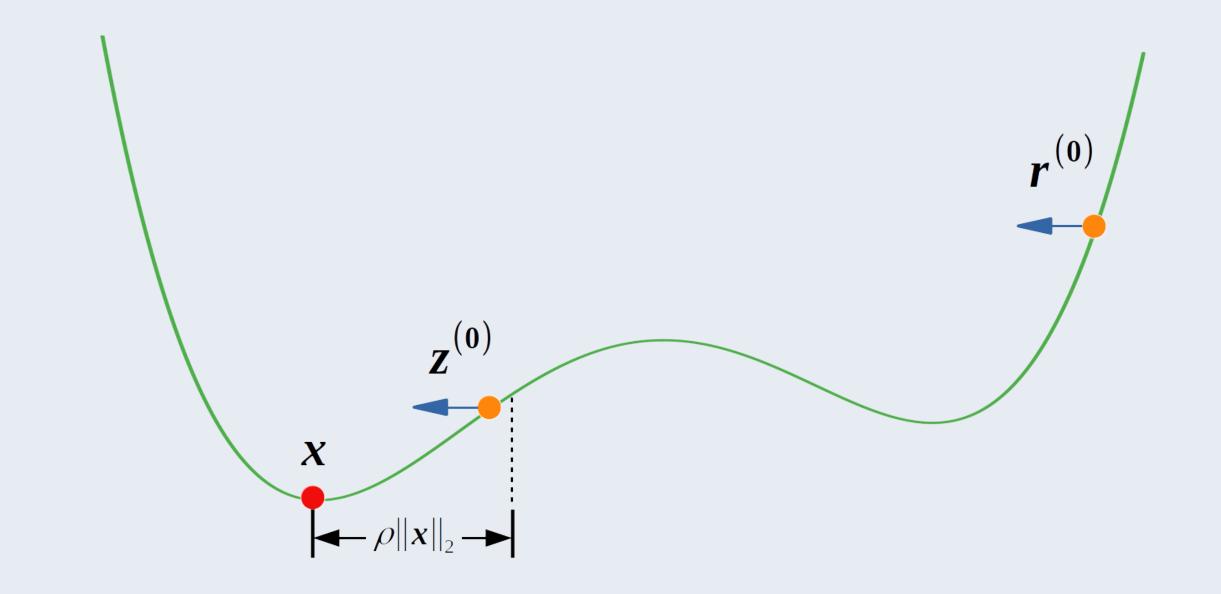


Figure 1: A good initialization is needed to solve a nonconvex optimization problem via gradient descent.

Spectral initialization

The left or right singular vector $\boldsymbol{z}^{(0)}$ of the following matrix:

$$\mathbf{S} = \frac{1}{m} \sum_{i=1}^{m} \overline{y}_i \cdot \mathbf{A}_i = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}^* \mathbf{A}_i^* \mathbf{x} \cdot \mathbf{A}_i.$$
 (5)

• For sufficiently large m, with high probability S concentrates around its expectation in terms of spectral norm.

$$\mathbb{E}[\boldsymbol{S}] = 2\boldsymbol{x}\boldsymbol{x}^* \tag{6}$$

- The spectral initializer $oldsymbol{z}^{(0)}$ is close to a global optimum $oldsymbol{x}$ [1,2].

$$\operatorname{dist}(\boldsymbol{z}^{(0)}, \boldsymbol{x}) \le \delta \|\boldsymbol{x}\|_2 \tag{7}$$

holds with high probability.

Lemma

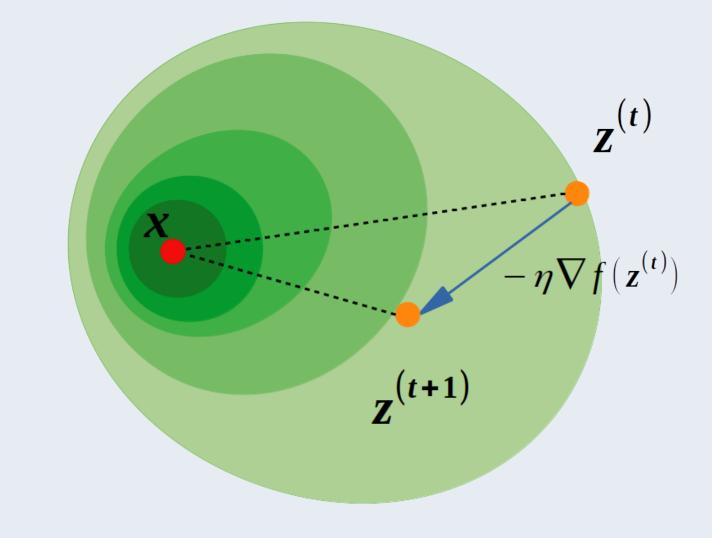
When $m \geq Cn$ for some sufficiently large constant C, for all $\boldsymbol{p}, \boldsymbol{q} \in \mathbb{C}^n$ satisfying $\|\boldsymbol{p}\|_2 = 1$, $\|\boldsymbol{q}\|_2 = 1$ and every $\nu > 0$, the following

$$\left\| \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{p}^* \boldsymbol{A}_i^* \boldsymbol{q} \cdot \boldsymbol{A}_i - 2 \boldsymbol{q} \boldsymbol{p}^* \right\| \leq \nu,$$
 (8)

holds with high probability.



Linear convergence



$$\operatorname{dist}(\boldsymbol{z}^{(t+1)}, \boldsymbol{x}) \leq \mu \cdot \operatorname{dist}(\boldsymbol{z}^{(t)}, \boldsymbol{x}), \quad \mu \in (0, 1)$$
(9)

• Guaranteed if $f(\boldsymbol{x})$ satisfies the regularity condition $RC(\alpha,\beta,\rho)$ [2] for all $\boldsymbol{z} \in E(\rho) = \{ \boldsymbol{z} \mid \operatorname{dist}(\boldsymbol{z}, \boldsymbol{x}) \leq \rho \|\boldsymbol{x}\|_2 \}.$

$$\operatorname{Re}\left(\langle \nabla f(\boldsymbol{z}), \boldsymbol{z} - \boldsymbol{x} e^{\boldsymbol{j}\phi_{\min}} \rangle\right) \ge \frac{1}{\alpha} \operatorname{dist}^2(\boldsymbol{z}, \boldsymbol{x}) + \frac{1}{\beta} \|\nabla f(\boldsymbol{z})\|_2^2,$$
 (10)

where $\alpha > 0$, $\beta > 0$, $1 > \rho > 0$ are some constants.

Main theorem

When $m \geq Cn$ for some sufficiently large constant C,

- **1** There exists a choice of $1 > \nu > 0$, $1 > \rho > 0$, $\alpha > 0$, $\beta > 0$ such that $RC(\alpha, \beta, \rho)$ holds on $E(\rho)$ with high probability.
- **2** Furthermore, if the step size $0 < \eta \leq \frac{2}{\beta}$, the gradient descent with the spectral initializer $oldsymbol{z}^{(0)}$ converges linearly to $oldsymbol{x}$

$$\operatorname{dist}\left(\boldsymbol{z}^{(t)}, \boldsymbol{x}\right) \leq \left(\sqrt{1 - \frac{2\eta}{\alpha}}\right)^{t} \rho \cdot \|\boldsymbol{x}\|_{2}, \tag{11}$$

with high probability.

Experimental results

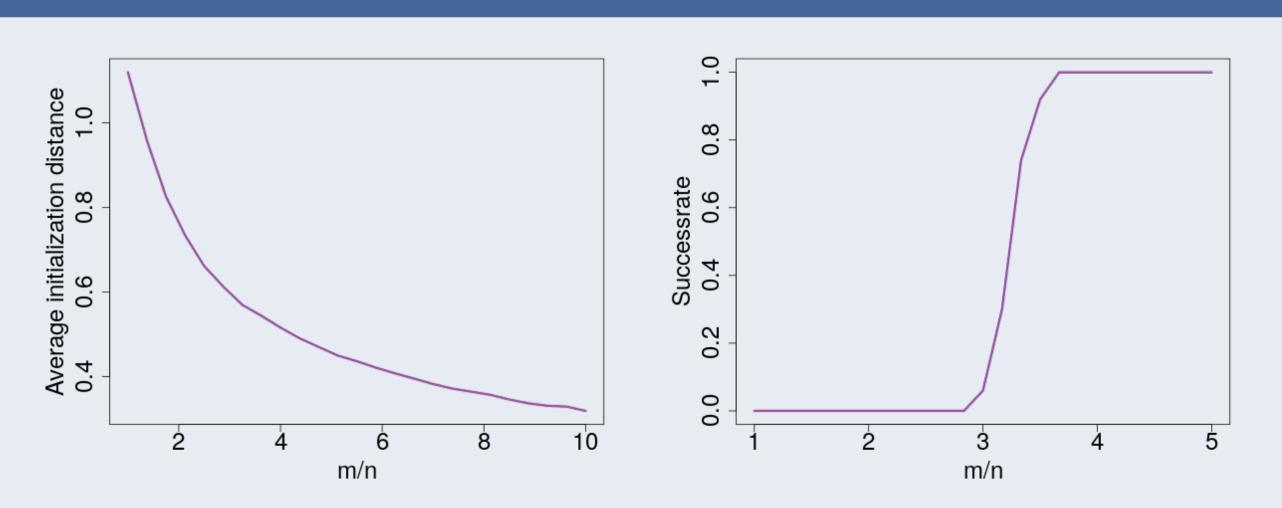


Figure 2: Left: $dist(\boldsymbol{z}^{(0)}, \boldsymbol{x})$; Right: Phase transition of the success rate.

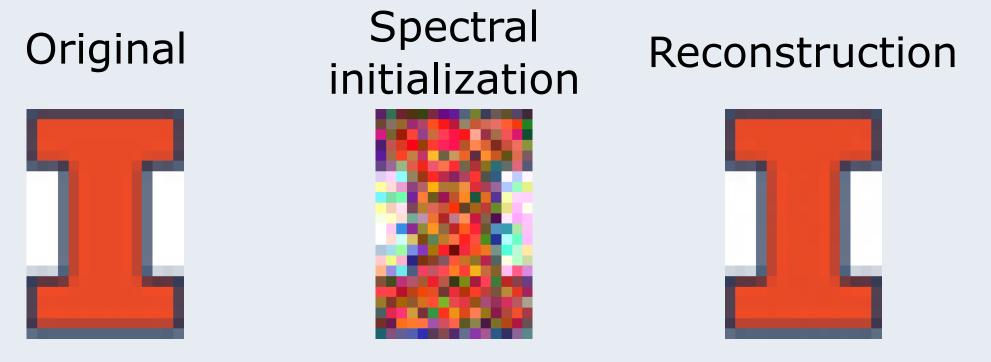


Figure 3: Recovery of the UIUC logo.

References

- [1] Netrapalli et al., Phase retrieval using alternating minimization, IEEE Trans. Signal Process., 2015
- [2] Candès et al., Phase retrieval via Wirtinger flow: Theory and algorithms, IEEE Trans. Inf. Theory, 2015
- [3] S. Huang et al., Solving Complex Quadratic Systems with Full-Rank Random Matrices, arXiv, vol.abs/1902.05612, 2019