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Learning without ground truth data

• Imaging in applied sciences is exploratory in nature: seismic
imaging, remote sensing, molecular imaging etc.

• Ground truth models are unavailable and need to be
discovered which limits the use of data-intensive modern
machine learning techniques.

• Formulation:

Figure 1: Formulation for linearized seismic traveltime tomography.

• y ∈ RM are noisy measurements.
•A ∈ RM×N , M � N is the measurement matrix.
•x ∈ X ⊂ RN is the required image.

Drawback of existing approaches

•Classical approaches: `1, `2 regularization and
sparsity-based methods fail because we have only a few
measurements (A is severely underdetermined).

• “Deep” approaches: Modern GAN and U-Net-based
methods require lots of training data which we do not have.
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Figure 2: The existing approaches do not perform well with our severely
ill-posed seismic traveltime tomography measurement matrix A.

Even getting a coarse reconstruction is hard!

Can we reliably recover geometries using a CNN
trained on a completely different dataset?

Training examples:
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Figure 3: Reconstructions with a competitive U-Net baseline trained on a
different dataset. U-Net fails to get the correct structural information.

Solution: Regularization by random projections

Assumption: X is a low-dimensional manifold and A is injective on X . However, we do not know X or have samples from it.
Two stage method: Learn to obtain orthogonal projections of X from measurements, y

(i) Decompose a “hard” task of learning the unstable map, y → x into an ensemble of “easy” tasks of learning more stable maps from
y to projections of the unknown model, x, into random low-dimensional subspaces.

(ii) Combine the random subspace projection estimates. Here we choose subspaces to be piecewise-constant Delaunay triangulations.
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Figure 4: We estimate the projections, {P Sλ
x}Λλ=1 onto the random subspaces {Sλ}Λλ=1 and then combine them using a reformulated inverse problem.

Using projections allows us to generalize to scenarios not seen during training (see Results).

Reformulated inverse problem

• Let Bλ ∈ RN×K be an orthogonal basis for the subspace Sλ, and qλ def= qλ(y) be the estimate of the expansion coefficients of x in
basis Bλ from the measurements y.

• Combine subspsace estimates as q def= q(y) def=
 q>1 , q>2 , . . . , q>Λ

> ∈ RKΛ and define B def=
B1 B2 . . . BΛ

 ∈ RN×KΛ to obtain
the following reformulated inverse problem

y = Ax + η ⇒ q ≈ B>x.

• Solve the reformulated problem using your favorite method, for example x̂ = arg minx∈[0,1]N
‖q −B>x‖2

2 + λϕ(x)
 .

Need for non-linear operators to estimate projections

Figure 5: Left: Non-linear maps enable us to get null-space information from measurements. Right: We estimate orthogonal projections from measurements.

• The best linear operator that estimates projections into Sλ from y is an oblique projection that always lies in null-space of A.
• Using non-linear methods to get orthogonal projections of x gives us missing null-space information.
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Figure 6: Reconstructions from our method are quantitatively and qualita-
tively better than the U-net baseline (Figure 3).
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Figure 7: Our method is substantially better for noise models not seen
during training. Here measurements are set to zero with probability p.
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Figure 8: Further reconstructions demonstrate our method’s ability to cap-
ture correct structural features.

Scenario Direct
inversion

Random
mesh

10 db train and ∞ db test 13.78 15.38
∞ db train and 10 db test 10.34 12.88

10 dB train and erasures with p = 1/8 9.03 11.09
Table 1: Over a dataset of 102 metal casting x-ray images, our method
reports better SNRs in a variety of scenarios.

Our method stabilizes the learning problem via the
use of random projections and outperforms baselines
even when tested on scenarios not seen in training.
Such scenarios are typical in the applied sciences.

Future work

• We want to extend our approach to adversarial imaging
scenarios in the applied sciences.

• We are working to improve the second stage of our method
using modern regularizers like deep-image prior.


