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Why fast random projections?

•Key to many algorithms in machine learning, signal
processing and numerical linear algebra.
•Applications: classification with random features, kernel
approximation, matrix optimization via sketching,
randomized linear algebra and many more!
•Bottleneck: memory and computation intensive when
applied to images, videos, and modern big data streams.

→ Can we increase the size and speed of such projections?

Random projections at the speed of light

•Optics-based matrix multiplications can be much faster and
energy-efficient than the CPU and GPU.
•The optical processing unit (OPU):
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| 〈a, ξ〉 |2 = |y|2
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• Input data, ξ ∈ RN , is “imprinted” onto a coherent light
beam using a digital micro-mirror device (DMD) and
shined through a multiple scattering medium.
•The scattered lightfield in the sensor plane is written as

y = Aξ
where A ∈ CM×N has iid standard complex Gaussian
entries.
•We can only measure the quantized intensity of scattered
light, |y|2, and the phase information is lost.

Measurement phase retrieval (MPR)

We have
b = |y|2 + η = |Aξ|2 + η,

where
b ∈ RM is the measurement
ξ ∈ RN is the input
A ∈ CM×N is an iid standard complex Gaussian matrix
y ∈ CM

η ∈ RM is noise.

GOAL: Recover the phase of each complex-valued
element of y, yi for 1 ≤ i ≤M , from its magnitude
measurements when ξ is known and A is unknown.

Recovery up to a reference phase and conjugation

•With A unknown, recovering the absolute phase of Aξ is impossible.
•Observation: with A standard complex Gaussian, R(A) has the
same distribution as A where R is a transform that adds a constant
phase to each row of its argument (multiplies it by
diag(ejφ1, . . . , ejφm)) and conjugates a subset of its rows.
•Approach: use the same effective R for all inputs so that relative
phases between recovered measurements are the same.

OBJECTIVE: Given inputs ξ1, . . . , ξS,
compute the estimates of random projections
ŷ1, . . . , ŷS up to a global row-wise phase and
conjugation; ŷs ≈ R(ys) for all 1 ≤ s ≤ S for

some possibly unknown R.

Measurements are distances

• Input signal ξ ∈ RN .
•K reference signals rk ∈ RN for 1 ≤ k ≤ K with rK = 0
•Build X ∈ RN×Q, so that X = [ξ, r1, r2, · · · , rK] and let Q = K + 1.
•The qth column of X is denoted xq.

• Consider randomly projecting (xq − xr) for all (q, r).
•This gives measurement | 〈am,xq − xr〉 |2 = |yq,m − yr,m|2 for row m of A.
KEY FACT: By measuring the squared Euclidean distance between
points on the complex plane we can localize points on the complex

plane.
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Figure: We can measure distances |yq − yr|2.

Distance geometry MPR algorithm

OVERVIEW: Obtain distances between random projections and known references
to localize random projection and obtain relative measurement phase.
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Step 1)
Localize first input (s = 1), y1

m = 〈am, ξ1〉.
This fixes anchors y2,m, . . . , y4,m and R.
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Second, align anchors y2,m, . . . , y4,m
with first input anchors via
rotations and reflections.
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Step 2)
First, localize sth input, ysm = 〈am, ξs〉.
Anchors may not be aligned.

s = 1 s = 2Step 1 Step 2

Relative measurement
phase obtained

Multidimensional scaling (MDS) used for localization
Centering to origin because rK = 0
Procrustes analysis used to align anchors

while s ≤ S
s + +

For each row of A:

Experimental verification

The system is approximately linear when using our
method and enables new randomized algorithms.

Linearity.
• Recover y and z from |y|2 = |Aξ1|

2 and |z|2 = |Aξ2|
2.

•Do we get (y + z) when solving |v|2 = |A(ξ1 + ξ2)|
2?

•
linearity error = 1

M

M∑
m=1
|(ym + zm)− vm|

|vm|
.
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Figure: Experiments in simulation (left) and on a real hardware OPU
(right) to evaluate the linearity error. The input signals are of dimension
642, M is 100 and the number of reference signals are increased. The
classical MDS and MDS with gradient descent (MDS-GD) are used. In all
cases the error decreases as the number of anchors increases.

Randomized SVD (RSVD).
• RSVD of matrix B requires multiplying it by a random
Gaussian matrix.
•The OPU is used to compute this random matrix
multiplication with B ∈ R500×282 being 500 28 × 28
vectorized and stacked samples from the MNIST dataset.
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Figure: Reshaped leading right singular vectors of an MNIST matrix of
size 500× 282. The top rows shows the leading right singular vectors
after performing RSVD with the OPU and using our algorithm. The
bottom row shows the leading right singular vectors from Python. The
relative error is below each singular vector.

Sneak peek

• Swapping the roles of A and the input ξ reduces learning
A to a linear rather than quadratic problem.
• Concatenate K inputs into Ξ and recover Y and then A:

Y = AΞ.
•Dramatic improvements. State-of-the-art: 3.26 hours.
Our approach: 6.15 minutes!
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