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Why fast random projections? Recovery up to a reference phase and conjugation Experimental verification
e Key to many algorithms in machine learning, signal e With A unknown, recovering the absolute phase of A& is impossible. The system is approximately linear when using our
processing and numerical linear algebra. » Observation: with A standard complex Gaussian, R(A) has the OBJECTIVE: Given inputs &,,....&q, method and enables new randomized algorithms.
e Applications: classification with random features, kernel same distribution as A where R is a transform that adds a constant compute the estimates of random projections Linearity.
approximation, matrix optimization via sketching, phase to each row of its argument (multiplies it by Yi,...,Yc up to a global row-wise phase and
randomized linear algebra and many more! diag(e’?', ..., e/%n)) and conjugates a subset of its rows. conjugation; y, ~ R(y,) for all 1 < s < S for ® Recover y and z from |y\2 = |AE; * and ‘Z|2 = ‘A€2‘2-
® Bottleneck: memory and computation intensive when e Approach: use the same effective R for all inputs so that relative some possibly unknown R. * Do we get (y + z) when solving |v ‘= |A(E; 52)|2?
applied to images, videos, and modern big data streams. phases between recovered measurements are the same. o
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Can we increase the size and speed of such projections? linearity error = > .
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e Input signal € € R*". Ll o8 §40_
e Optics-based matrix multiplications can be much faster and o K reference signals 7}, € RY for1 <k < K withrrg =0 % 6 %
. . ] - 1_30_
energy-efficient than the CPU and GPU. o Build X € R¥*Q, so that X = [£, 71,79, - , 7] and let Q = K + 1. g 4. \ g
e The optical processing unit (OPU): * The gth column of X is denoted . g * T T 90 =N
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Figure: Experiments in simulation (left) and on a real hardware OPU
(right) to evaluate the linearity error. The input signals are of dimension
642, M is 100 and the number of reference signals are increased. The

classical MDS and MDS with gradient descent (MDS-GD) are used. In all

cases the error decreases as the number of anchors increases.

» Consider randomly projecting (x, — ;) for all (¢, 7).

hgﬁ%r \ - » This gives measurement | (@, &, — ,) |> = |[Yg.m — Yr.m| for row m of A.
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KEY FACT: By measuring the squared Euclidean distance between

™
N
N
_ b points on the complex plane we can localize points on the complex Figure: We can measure distances |y, — yr|%.
DMD encoding SN plane
N N : .
of  €R = Randomized SVD (RSVD).
2 2 h
(@, 8) " =ly|" <—— ® RSVD of matrix B requires multiplying it by a random
iid : . . . .
a = N(0,I) + jN(0,I) Distance geometry MPR algorithm Gaussian matrix.
® The OPU is used to compute this random matrix
o Input data, £ € RN o u - ted” ont g t licht OVERVIEW: Obtain distances between random projections and known references multiplication with B &€ JR500x28 being 500 28 x 28
nput data, , Is "Imprinted” onto a coherent || : .. . :
> _ . e _ £ to localize random projection and obtain relative measurement phase. vectorized and stacked samples from the MNIST dataset.
beam using a digital micro-mirror device (DMD) and
shined through a multiple scattering medium. Step 1) Step 2) Second, align anchors ¥, - - ., Yam Leading right singular vectors
e The scattered lightfield in the sensor plane is written as Localize first input (s = 1), y,, = (a™, &)). First, localize sth input, y;, = (@™, &,).  with first input anchors via & . r} m " ¢
y— AL This fixes anchors y2 1y, . . ., Yam and R. Anchors ma)ll not be aligned. rotations and reflectiorlls. O . | ¢
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where A € CM*¥ has iid standard complex Gaussian yQ"fb N Y o m o r} , - J
| I\ L ——— pry s # ,
entries. AN X L 1 a |
_ _ _ M g 3.79e-13 4.96e-12 8.36e-13 2.90e-12 3.97e-12 1.72e-12 2.67e-12
® We can only measure the quantized intensity of scattered PN e Pt 1 Relative error
light, |y 2, and the phase information is lost. II \\ .............. v /x..% H Figure: Reshaped leading right singular vectors of an MNIST matrix of
II \ -'\’ y37m;" // ) H size 500 x 282. The top rows shows the leading right singular vectors
Lo \\ M / after performing RSVD with the OPU and using our algorithm. The
Ui m’{‘\\ \\ Re — ——====- 3¢ Ui Re bottom row shows the leading right singular vectors from Python. The
Measurement phase retrieval (M PR) ! \\\\ \\ 7 relative error is below each singular vector.
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We have

b=y’ +n=|Ag" +mn,

Im Sneak peek
where For each row of A:
b € RM is the measurement Relative measurement W < 1 e Swapping the roles of A and the input & reduces learning
¢ € RY is the input s=1 s =2 phase obtained g >%m A to a linear rather than quadratic problem.
e e """" . . e
A € CM™*N s an iid standard complex Gaussian matrix P P R ® Concatenate K inputs into = and recover Y and then A:
M awhile s <S8 “. |
y € C = CA I Y = AE.
n € R is noise. ST T o> D tic i ts. State-of-the-art: 3.26 h
o Re e Dramatic improvements. State-of-the-art: 3. ours.
: . . . . Our approach: 6.15 minutes!
GOAL: Recover the phase of each complex-valued Multidimensional scaling (MDS) used for localization PP
element of y, y;, for 1 <: < M, from its magnitude : - _ . L
o & h s Ky d A gk Centering to origin because rx =0 S. Gupta et al. "Fast Optical System Identification by Numer-
measurements when £ is known an SR LE Procrustes analysis used to align anchors

ical Interferometry." arXiv 2019




