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Deep neural networks are sensitive

• Deep neural network classifiers can give almost 0% accuracywhen the

test data is perturbed by an imperceptible amount

• Clean data, x, is correctly classified

• Adversarial samples, xadv, are incorrectly classified

• xadv are `∞ perturbed samples: ‖x− xadv‖∞ ≤ 8
255

≈ 0.03
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Building robust models

• Regular adversarial training (RAT) is popular:

minθ ρ(θ); ρ(θ) = E(x,y)∼D
[
max‖x̃−x‖∞≤ε L(fθ(x̃), y)

]

1. Replace data with adversarial counterparts

2. Update model with adversarial counterparts

• Projected Gradient Descent (PGD) for maximization

xt+1 = Πε−ball (x
t + α sign(∇xtL(fθ(xt), y)))

Projects to an ε-ball around x after every iteration
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Building robust models is expensive

• Regular adversarial training (RAT) is popular:

minθ ρ(θ); ρ(θ) = E(x,y)∼D
[
max‖x̃−x‖∞≤ε L(fθ(x̃), y)
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• Projected Gradient Descent (PGD) for maximization

xt+1 = Πε−ball (x
t + α sign(∇xtL(fθ(xt), y)))

Projects to an ε-ball around x after every iteration

Each PGD

iteration requires a

forward and

backward pass of

the model which is

computationally

expensive
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Model architecture Natural training Regular adversarial training

ResNet-50 1.1 hours 6.8 hours

WideResNet-28x10 2.2 hours 14.7 hours

CIFAR-10 for 155 epochs: 10-step PGD, ε = 8/255, α = 2/255
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Usefulness of initial adversaries in RAT

• Generated adversarial samples depend on the evolving model

parameters which are randomly initialized

• Final model parameters are very different⇒ Initial training samples are

very different from adversaries that the final model will face

• Generating initial samples adds computational overhead
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• Generated adversarial samples depend on the evolving model
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• Perform RAT (learning rate

drop after epoch 100)

• Test final model with

adversaries generated from

model parameters at

previous epochs
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Delayed adversarial training (DAT)

• Adversarial samples are computationally expensive to generate and not

useful in the initial training phase

• Use free natural training samples initially until model stabilizes

• Automated switching: Training loss on natural samples stabilizes before

first learning rate drop⇒ Switch from natural to adversarial samples

when loss stabilizes before first learning rate drop
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Delayed adversarial training (DAT) helps generalization
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• DAT trained models show higher test accuracy

• Models are not overfitting to adversarial samples of little relevance in

the initial phase of training

• Along with the higher accuracy, we observe a higher training loss with

DATwhich indicates better generalization
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Training times and test accuracy against adversaries of
training strength

CIFAR-10: 10-step PGD, ε=8/255,α=2/255

Training time Time saved Adversarial accuracy Natural accuracy

WideResNet-28x10

RAT

14.7 hours
46.9%

48.5% 86.8%

DAT

7.8 hours 49.7% 87.9%

RAT early stop

10.9 hours
62.4%

49.2% 87.1%

DAT early stop

4.1 hours 53.6% 87.9%

ResNet-18

RAT

2.5 hours
36.0%

37.0% 73.8%

DAT

1.6 hours 40.4% 72.8%

RAT early stop

1.9 hours
52.6%

40.6% 71.0%

DAT early stop

0.9 hours 41.1% 69.9%

CIFAR-100: 10-step PGD, ε=8/255,α=2/255

Training time Time saved Adversarial accuracy Natural accuracy

ResNet-50
RAT

6.9 hours
42.0%

15.2% 44.2%

DAT

4.0 hours 15.2% 46.6%

MNIST: 40-step PGD, ε=0.3,α=0.01
on less powerful system

Training time Time saved Adversarial accuracy Natural accuracy

Two-layer CNN
RAT

2.2 hours
13.6%

91.4% 98.2%

DAT

1.9 hours 91.9% 98.2%
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Generalization to attacks of different strength to training
strength
1. Keep ε-ball size fixed and vary PGD steps (T)

2. Keep T fixed and vary ε
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Training adversary strength: 10-step PGD, ε = 8/255, α = 2/255
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Generalization to attacks of different strength to training
strength
1. Keep ε-ball size fixed and vary PGD steps (T)

2. Keep T fixed and vary ε
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Black-box attack performance

• Test against attacks from independently trained copies of the network

• CIFAR-10; WideResNet-28x10; 10-step PGD, ε = 8/255, α = 2/255

• Independent copies trained with 1) Natural training; 2) Regular

adversarial training (RAT); 3) Delayed adversarial training (DAT)

White-box Independent natural Independent RAT Independent DAT

Accuracy 49.7% 86.7% 69.4% 65.7%
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Summary

• There is an initial phase of adversarial training where adversarial

samples are of little relevance

• These samples are expensive to generate

• Delayed adversarial training (DAT) uses natural samples in the initial

phase to save time

• DAT achieves comparable accuracy

Check out our full paper for more details and more experimental results
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