Fast Optical System Identification by Numerical Interferometry

Sidharth Gupta¹

Rémi Gribonval² Laurent Daudet ³

Ivan Dokmanić¹

¹University of Illinois at Urbana-Champaign ²Univ Lyon, Inria, CNRS, ENS de Lyon ³LightOn, Paris

International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2020

Imaging through scattering media

- Numerous applications require imaging through scattering media:
 - Reconstructing scenes through fog
 - Imaging through tissues in the human body
 - Detecting patterns, cracks and material properties behind paint
 - Optical neural network backpropagation

scitechdaily.com

Wieneke S, Gerhard C. Tissue optics and laser-tissue interactions.

Imaging through scattering media

- Numerous applications require imaging through scattering media:
 - Reconstructing scenes through fog
 - Imaging through tissues in the human body
 - Detecting patterns, cracks and material properties behind paint
 - Optical neural network backpropagation
- Challenging physical limitations makes imaging in these scenarios prohibitively time consuming and expensive

Illumination source

- Output in detection plane, y, is y = Ax with A iid standard complex Gaussian
- Get x by simple linear inversion?

- Output in detection plane, y, is y = Ax with A iid standard complex Gaussian
- Get x by simple linear inversion?

- We can only measure $|y|^2 = |Ax|^2$
- Transmission matrix, *A*, typically unknown

- Output in detection plane, y, is y = Ax with A iid standard complex Gaussian
- Get x by simple linear inversion?

- We can only measure $|y|^2 = |Ax|^2$
- Transmission matrix, *A*, typically unknown

Goal: Rapidly learn A

1. With *K* known calibration signals, $\Xi \in \mathbb{R}^{N \times K}$, measure $|Y|^2 = |A\Xi|^2$

- 1. With K known calibration signals, $\Xi \in \mathbb{R}^{N \times K}$, measure $|Y|^2 = |A\Xi|^2$
- 2. Learn $A \in \mathbb{C}^{M \times N}$:

- Solve M quadratic equations separately, $|(\pmb{y}^m)^*|^2 = |\pmb{\Xi}^*(\pmb{a}^m)^*|^2 \text{, to recover each } row$
- 3.3 hours with GPU when ${old A}$ is $256^2 \times 64^2$

¹ Rajaei B et al. Intensity-only optical compressive imaging using a multiply scattering material and a double phase retrieval approach. IEEE ICASSP 2016.

² Sharma M et al. Inverse scattering via transmission matrices: Broadband illumination and fast phase retrieval algorithms. IEEE Trans. Comp. Imaging 2019.

- 1. With K known calibration signals, $\Xi \in \mathbb{R}^{N \times K}$, measure $|Y|^2 = |A\Xi|^2$
- 2. Learn $A \in \mathbb{C}^{M \times N}$:

- Solve M quadratic equations separately, $|(\pmb{y}^m)^*|^2 = |\pmb{\Xi}^*(\pmb{a}^m)^*|^2 \text{, to recover each } row$
- 3.3 hours with GPU when $oldsymbol{A}$ is $256^2 \times 64^2$
 - 3. Measure $|y|^2 = |Ax|^2$ for signal of interest, x

¹ Rajaei B et al. Intensity-only optical compressive imaging using a multiply scattering material and a double phase retrieval approach. <u>IEEE ICASSP 2016</u>.

² Sharma M et al. Inverse scattering via transmission matrices: Broadband illumination and fast phase retrieval algorithms. IEEE Trans. Comp. Imaging 2019.

- 1. With K known calibration signals, $\Xi \in \mathbb{R}^{N \times K}$, measure $|Y|^2 = |A\Xi|^2$
- 2. Learn $A \in \mathbb{C}^{M \times N}$:

- Solve M quadratic equations separately, $|(\pmb{y}^m)^*|^2 = |\pmb{\Xi}^*(\pmb{a}^m)^*|^2 \text{, to recover each } row$
- 3.3 hours with GPU when ${old A}$ is $256^2 \times 64^2$
 - 3. Measure $|\boldsymbol{y}|^2 = |\boldsymbol{A}\boldsymbol{x}|^2$ for signal of interest, \boldsymbol{x}
 - 4. Use existing method to recover x from $|y|^2$ with learned A

¹ Rajaei B et al. Intensity-only optical compressive imaging using a multiply scattering material and a double phase retrieval approach. IEEE ICASSP 2016.

² Sharma M et al. Inverse scattering via transmission matrices: Broadband illumination and fast phase retrieval algorithms. IEEE Trans. Comp. Imaging 2019.

- 1. With K known calibration signals, $\Xi \in \mathbb{R}^{N \times K}$, measure $|Y|^2 = |A\Xi|^2$
- 2. Learn $A \in \mathbb{C}^{M \times N}$:

- Solve M quadratic equations separately, $|(\pmb{y}^m)^*|^2 = |\pmb{\Xi}^*(\pmb{a}^m)^*|^2 \text{, to recover each row}$
- 3.3 hours with GPU when ${oldsymbol A}$ is $256^2 \times 64^2$
 - 3. Measure $|\boldsymbol{y}|^2 = |\boldsymbol{A}\boldsymbol{x}|^2$ for signal of interest, \boldsymbol{x}
 - 4. Use existing method to recover x from $|y|^2$ with learned A

Rajaei B et al. Intensity-only optical compressive imaging using a multiply scattering material and a double phase retrieval approach. <u>IEEE ICASSP 2016</u>.
 Sharma M et al. Inverse scattering via transmission matrices: Broadband illumination and fast phase retrieval algorithms. IEEE Trans. Comp. Imaging 2019.

The way forward: measurement phase retrieval

- 1. With *K* known calibration signals, $\Xi \in \mathbb{R}^{N \times K}$, measure $|Y|^2 = |A\Xi|^2$
- 2. Learn $A \in \mathbb{C}^{M \times N}$:

Double phase retrieval ^{1,2}

- Solve M quadratic equations separately, $|({\bm y}^m)^*|^2 = |{\bm \Xi}^*({\bm a}^m)^*|^2 \text{, to recover each} \\ \text{row}$
- 3.3 hours with GPU when ${oldsymbol A}$ is $256^2 \times 64^2$

NEW: Measurement phase retrieval

- Recover Y without knowing A^3
 - Solve $Y = A\Xi$ to recover A
- <u>6.2 minutes</u> with CPU when ${\pmb A}$ is $256^2 \times 64^2$
- 3. Measure $|\boldsymbol{y}|^2 = |\boldsymbol{A}\boldsymbol{x}|^2$ for signal of interest, \boldsymbol{x}
- 4. Use existing method to recover x from $|y|^2$ with learned A

¹ Rajaei B et al. Intensity-only optical compressive imaging using a multiply scattering material and a double phase retrieval approach. <u>IEEE ICASSP 2016</u>.

² Sharma M et al. Inverse scattering via transmission matrices: Broadband illumination and fast phase retrieval algorithms. IEEE Trans. Comp. Imaging 2019.

³ One method shown in Gupta S et al. Don't take it lightly: Phasing optical random projections with unknown operators. <u>NeurIPS 2019</u>.

A linear system to recover transmission matrices

• With Y recovered and Ξ designed, instead of $|Y|^2 = |A\Xi|^2$, solve

$$oldsymbol{Y} = oldsymbol{A} oldsymbol{\Xi}$$
 with $oldsymbol{\Xi} \in \mathbb{R}^{N imes K}, oldsymbol{A} \in \mathbb{C}^{M imes N}, oldsymbol{Y} \in \mathbb{C}^{M imes K}$

A linear system to recover transmission matrices

• With Y recovered and Ξ designed, instead of $|Y|^2 = |A\Xi|^2$, solve

$$oldsymbol{Y} = oldsymbol{A}oldsymbol{\Xi}$$
 with $oldsymbol{\Xi} \in \mathbb{R}^{N imes K}, oldsymbol{A} \in \mathbb{C}^{M imes N}, oldsymbol{Y} \in \mathbb{C}^{M imes K}$

- Design Ξ with full row rank and more probe signals, K, than N
- Least-squares fit $\widehat{A} = \arg \min_{A} ||Y A\Xi||_{F}^{2} = Y\Xi^{\dagger}$

A linear system to recover transmission matrices

• With Y recovered and Ξ designed, instead of $|Y|^2 = |A\Xi|^2$, solve

$$oldsymbol{Y} = oldsymbol{A}oldsymbol{\Xi}$$
 with $oldsymbol{\Xi} \in \mathbb{R}^{N imes K}, oldsymbol{A} \in \mathbb{C}^{M imes N}, oldsymbol{Y} \in \mathbb{C}^{M imes K}$

• Design Ξ with full row rank and more probe signals, K, than N

• Least-squares fit
$$\widehat{A} = \arg\min_{A} ||Y - A\Xi||_{F}^{2} = Y\Xi^{\dagger}$$

- Efficient $Y\Xi^{\dagger}$:
 - Design Ξ as a concatenation of two circulant $N \times N$ matrices, $\Xi = [\Xi_A, \Xi_B] \in \mathbb{R}^{N \times 2N}$
 - Use FFT to efficiently compute $Y\Xi^{\dagger}$ as outlined in our paper

Fast transmission matrix identification

- We compute *A* ∈ ℂ^{*M*×*N*} from real noisy optical hardware measurements:
 - 1. Imprint signals onto a coherent light beam
 - 2. Shines them through a multiple scattering medium, *A*
 - 3. Medium acts approximately like a standard iid complex Gaussian matrix
 - 4. 8-bit precision camera captures scattered light

Fast transmission matrix identification

- We compute *A* ∈ ℂ^{*M*×*N*} from real noisy optical hardware measurements:
 - 1. Imprint signals onto a coherent light beam
 - 2. Shines them through a multiple scattering medium, *A*
 - 3. Medium acts approximately like a standard iid complex Gaussian matrix
 - 4. 8-bit precision camera captures scattered light
- Double phase retrieval: $A \in \mathbb{C}^{M \times N}$ with $N = 64^2$ and M/N = 16 took 3.26 hours

Fast transmission matrix identification

- We compute *A* ∈ ℂ^{*M*×*N*} from real noisy optical hardware measurements:
 - 1. Imprint signals onto a coherent light beam
 - 2. Shines them through a multiple scattering medium, *A*
 - 3. Medium acts approximately like a standard iid complex Gaussian matrix
 - 4. 8-bit precision camera captures scattered light
- Double phase retrieval: $A \in \mathbb{C}^{M \times N}$ with $N = 64^2$ and M/N = 16 took 3.26 hours

Time taken for measurement phase retrieval and solving $Y = A\Xi$:

N	M/N	Time (minutes)
32^2	32	0.97
32^2	64	2.05
32^2	128	4.01
64 ²	16	6.15
64^{2}	32	11.69
64 ²	64	24.14
96 ²	16	31.36
128 ²	12	71.97

Im

• Optical measurement $\mathbf{y}_{10}^2 = |\langle \boldsymbol{a}, \xi_1 \rangle|^2 = |\boldsymbol{y}_1|^2 \in \mathbb{R}$ is squared distance to origin

Re

- Optical measurement $y_{10}^2 = |\langle a, \xi_1 \rangle|^2 = |y_1|^2 \in \mathbb{R}$ is squared distance to origin
- Let $r_0 = 0$ and say we know two other complex numbers $r_1, r_2 \in \mathbb{C}$

- Optical measurement $y_{10}^2 = |\langle a, \xi_1 \rangle|^2 = |y_1|^2 \in \mathbb{R}$ is squared distance to origin
- Let $r_0 = 0$ and say we know two other complex numbers $r_1, r_2 \in \mathbb{C}$
- $y_1 \in \mathbb{C}$ lies on a circle of radius y_{10}

- Optical measurement $y_{10}^2 = |\langle a, \xi_1 \rangle|^2 = |y_1|^2 \in \mathbb{R}$ is squared distance to origin
- Let $r_0 = 0$ and say we know two other complex numbers $r_1, r_2 \in \mathbb{C}$
- $y_1 \in \mathbb{C}$ lies on a circle of radius y_{10}
- Say we also know the distances between y_1 and r_1, r_2 :
 - $\mathbf{y}_{11}^2 := |\mathbf{y}_1 r_1|^2 \in \mathbb{R}$
 - $\mathbf{y}_{12}^2 := |y_1 r_2|^2 \in \mathbb{R}$

- Optical measurement $y_{10}^2 = |\langle a, \xi_1 \rangle|^2 = |y_1|^2 \in \mathbb{R}$ is squared distance to origin
- Let $r_0 = 0$ and say we know two other complex numbers $r_1, r_2 \in \mathbb{C}$
- $y_1 \in \mathbb{C}$ lies on a circle of radius y_{10}
- Say we also know the distances between y_1 and r_1, r_2 :
 - $\mathbf{y}_{11}^2 := |\mathbf{y}_1 r_1|^2 \in \mathbb{R}$
 - $\mathbf{y}_{12}^2 := |y_1 r_2|^2 \in \mathbb{R}$

- Optical measurement $y_{10}^2 = |\langle a, \xi_1 \rangle|^2 = |y_1|^2 \in \mathbb{R}$ is squared distance to origin
- Let $r_0 = 0$ and say we know two other complex numbers $r_1, r_2 \in \mathbb{C}$
- $y_1 \in \mathbb{C}$ lies on a circle of radius y_{10}
- Say we also know the distances between *y*₁ and *r*₁, *r*₂:
 - $\mathbf{y}_{11}^2 := |\mathbf{y}_1 r_1|^2 \in \mathbb{R}$
 - $\mathbf{y}_{12}^2 := |y_1 r_2|^2 \in \mathbb{R}$
- With r_0 , r_1 , r_2 and distances known, we can localize y_1 and find the measurement phase

- Optical measurement $y_{10}^2 = |\langle a, \xi_1 \rangle|^2 = |y_1|^2 \in \mathbb{R}$ is squared distance to origin
- Let $r_0 = 0$ and say we know two other complex numbers $r_1, r_2 \in \mathbb{C}$
- $y_1 \in \mathbb{C}$ lies on a circle of radius y_{10}
- Say we also know the distances between *y*₁ and *r*₁, *r*₂:
 - $\mathbf{y}_{11}^2 := |\mathbf{y}_1 r_1|^2 \in \mathbb{R}$
 - $\mathbf{y}_{12}^2 := |y_1 r_2|^2 \in \mathbb{R}$
- With r_0 , r_1 , r_2 and distances known, we can localize y_1 and find the measurement phase

- Optical measurement $y_{10}^2 = |\langle a, \xi_1 \rangle|^2 = |y_1|^2 \in \mathbb{R}$ is squared distance to origin
- Let $r_0 = 0$ and say we know two other complex numbers $r_1, r_2 \in \mathbb{C}$
- $y_1 \in \mathbb{C}$ lies on a circle of radius y_{10}
- Say we also know the distances between y_1 and r_1, r_2 :
 - $\mathbf{y}_{11}^2 := |\mathbf{y}_1 r_1|^2 \in \mathbb{R}$
 - $\mathbf{y}_{12}^2 := |y_1 r_2|^2 \in \mathbb{R}$
- With r_0 , r_1 , r_2 and distances known, we can localize y_1 and find the measurement phase

- Optical measurement $y_{10}^2 = |\langle a, \xi_1 \rangle|^2 = |y_1|^2 \in \mathbb{R}$ is squared distance to origin
- Let $r_0 = 0$ and say we know two other complex numbers $r_1, r_2 \in \mathbb{C}$
- $y_1 \in \mathbb{C}$ lies on a circle of radius y_{10}
- Say we also know the distances between y_1 and r_1, r_2 :
 - $\mathbf{y}_{11}^2 := |\mathbf{y}_1 r_1|^2 \in \mathbb{R}$
 - $\mathbf{y}_{12}^2 := |y_1 r_2|^2 \in \mathbb{R}$
- With r_0 , r_1 , r_2 and distances known, we can localize y_1 and find the measurement phase

- Optical measurement $y_{10}^2 = |\langle a, \xi_1 \rangle|^2 = |y_1|^2 \in \mathbb{R}$ is squared distance to origin
- Let $r_0 = 0$ and say we know two other complex numbers $r_1, r_2 \in \mathbb{C}$
- $y_1 \in \mathbb{C}$ lies on a circle of radius y_{10}
- Say we also know the distances between y_1 and r_1, r_2 :
 - $\mathbf{y}_{11}^2 := |\mathbf{y}_1 r_1|^2 \in \mathbb{R}$
 - $\mathbf{y}_{12}^2 := |y_1 r_2|^2 \in \mathbb{R}$
- With r_0 , r_1 , r_2 and distances known, we can localize y_1 and find the measurement phase

- Optical measurement $y_{10}^2 = |\langle a, \xi_1 \rangle|^2 = |y_1|^2 \in \mathbb{R}$ is squared distance to origin
- Let $r_0 = 0$ and say we know two other complex numbers $r_1, r_2 \in \mathbb{C}$
- $y_1 \in \mathbb{C}$ lies on a circle of radius y_{10}
- Say we also know the distances between *y*₁ and *r*₁, *r*₂:
 - $\mathbf{y}_{11}^2 := |\mathbf{y}_1 r_1|^2 \in \mathbb{R}$
 - $\mathbf{y}_{12}^2 := |y_1 r_2|^2 \in \mathbb{R}$
- With r_0 , r_1 , r_2 and distances known, we can localize y_1 and find the measurement phase

- Optical measurement $y_{10}^2 = |\langle a, \xi_1 \rangle|^2 = |y_1|^2 \in \mathbb{R}$ is squared distance to origin
- Let $r_0 = 0$ and say we know two other complex numbers $r_1, r_2 \in \mathbb{C}$
- $y_1 \in \mathbb{C}$ lies on a circle of radius y_{10}
- Say we also know the distances between *y*₁ and *r*₁, *r*₂:
 - $\mathbf{y}_{11}^2 := |\mathbf{y}_1 r_1|^2 \in \mathbb{R}$
 - $\mathbf{y}_{12}^2 := |y_1 r_2|^2 \in \mathbb{R}$
- With r_0 , r_1 , r_2 and distances known, we can localize y_1 and find the measurement phase

- Optical measurement $y_{10}^2 = |\langle a, \xi_1 \rangle|^2 = |y_1|^2 \in \mathbb{R}$ is squared distance to origin
- Let $r_0 = 0$ and say we know two other complex numbers $r_1, r_2 \in \mathbb{C}$
- $y_1 \in \mathbb{C}$ lies on a circle of radius y_{10}
- Say we also know the distances between *y*₁ and *r*₁, *r*₂:
 - $\mathbf{y}_{11}^2 := |\mathbf{y}_1 r_1|^2 \in \mathbb{R}$
 - $\mathbf{y}_{12}^2 := |y_1 r_2|^2 \in \mathbb{R}$
- With r_0 , r_1 , r_2 and distances known, we can localize y_1 and find the measurement phase

• Can we measure distances to known points to perform measurement phase retrieval?

- *K* known calibration signals: $\boldsymbol{\Xi} = [\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_K] \in \mathbb{R}^{N \times K}$
- $S \ge 3$ known anchor signals: $V = [v_1, \dots, v_S] \in \mathbb{R}^{N \times S}$
- For each row $\boldsymbol{a} \in \mathbb{C}^N$ of $\boldsymbol{A} \in \mathbb{C}^{M \times N}$:

- *K* known calibration signals: $\boldsymbol{\Xi} = [\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_K] \in \mathbb{R}^{N \times K}$
- $S \ge 3$ known anchor signals: $V = [v_1, \dots, v_S] \in \mathbb{R}^{N \times S}$
- For each row $\boldsymbol{a} \in \mathbb{C}^N$ of $\boldsymbol{A} \in \mathbb{C}^{M \times N}$:
- Assume known:
 - $r_s := \langle \boldsymbol{a}, \boldsymbol{v}_s \rangle \in \mathbb{C}$
 - $\mathbf{r}_s := |r_s|$

Unknowns:

•
$$y_k := \langle \boldsymbol{a}, \boldsymbol{\xi}_k \rangle \in \mathbb{C}$$

•
$$\mathbf{y}_k := |y_k|$$

- *K* known calibration signals: $\boldsymbol{\Xi} = [\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_K] \in \mathbb{R}^{N \times K}$
- $S \geq 3$ known anchor signals: $V = [v_1, \dots, v_S] \in \mathbb{R}^{N \times S}$
- For each row $\boldsymbol{a} \in \mathbb{C}^N$ of $\boldsymbol{A} \in \mathbb{C}^{M \times N}$:
- Assume known:
 - $r_s := \langle \boldsymbol{a}, \boldsymbol{v}_s \rangle \in \mathbb{C}$
 - $\mathbf{r}_s := |r_s|$
- Unknowns:

•
$$y_k := \langle \boldsymbol{a}, \boldsymbol{\xi}_k \rangle \in \mathbb{C}$$

$$\mathbf{y}_k := |y_k|$$

$$\begin{array}{l} \bullet \;\; \mathbf{y}_{ks}^2 := |\left< \boldsymbol{a}, \boldsymbol{\xi}_k - \boldsymbol{v}_s \right>|^2 \\ &= |\boldsymbol{y}_k - r_s|^2 \end{array}$$

Numerical interferometry rather than optical interferometry for signal interference

- *K* known calibration signals: $\boldsymbol{\Xi} = [\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_K] \in \mathbb{R}^{N \times K}$
- $S \geq 3$ known anchor signals: $V = [v_1, \dots, v_S] \in \mathbb{R}^{N \times S}$
- For each row $\boldsymbol{a} \in \mathbb{C}^N$ of $\boldsymbol{A} \in \mathbb{C}^{M \times N}$:
- Assume known:
 - $r_s := \langle \boldsymbol{a}, \boldsymbol{v}_s \rangle \in \mathbb{C}$
 - $\mathbf{r}_s := |r_s|$

• Unknowns:

•
$$y_k := \langle \boldsymbol{a}, \boldsymbol{\xi}_k \rangle \in \mathbb{C}$$

•
$$\mathbf{y}_k := |y_k|$$

•
$$\mathbf{y}_{ks}^2 := |\langle \boldsymbol{a}, \boldsymbol{\xi}_k - \boldsymbol{v}_s \rangle|^2$$

= $|\boldsymbol{y}_k - r_s|^2$

$$\mathbf{y}_{ks}^2 = \mathbf{r}_s^2 + \mathbf{y}_k^2 - 2r_s^T y_k$$

- *K* known calibration signals: $\boldsymbol{\Xi} = [\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_K] \in \mathbb{R}^{N \times K}$
- $S \geq 3$ known anchor signals: $V = [v_1, \dots, v_S] \in \mathbb{R}^{N \times S}$
- For each row $\boldsymbol{a} \in \mathbb{C}^N$ of $\boldsymbol{A} \in \mathbb{C}^{M imes N}$:
- Assume known:
 - $r_s := \langle \boldsymbol{a}, \boldsymbol{v}_s \rangle \in \mathbb{C}$
 - $\mathbf{r}_s := |r_s|$

• Unknowns:

•
$$y_k := \langle \boldsymbol{a}, \boldsymbol{\xi}_k \rangle \in \mathbb{C}$$

•
$$\mathbf{y}_k := |y_k|$$

•
$$\mathbf{y}_{ks}^2 := |\langle \boldsymbol{a}, \boldsymbol{\xi}_k - \boldsymbol{v}_s \rangle|^2$$

= $|\boldsymbol{y}_k - r_s|^2$

$$\mathbf{y}_{ks}^2 = \mathbf{r}_s^2 + \mathbf{y}_k^2 - 2r_s^T y_k$$
$$\mathbf{y}_{ks}^2 - \mathbf{r}_s^2 = \left[-2r_s^T, 1\right] \begin{bmatrix} y_k \\ \mathbf{y}_k^2 \end{bmatrix}$$

(Interpreting complex numbers as vectors in \mathbb{R}^2)

- *K* known calibration signals: $\boldsymbol{\Xi} = [\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_K] \in \mathbb{R}^{N \times K}$
- $S \geq 3$ known anchor signals: $V = [v_1, \dots, v_S] \in \mathbb{R}^{N \times S}$
- For each row $\boldsymbol{a} \in \mathbb{C}^N$ of $\boldsymbol{A} \in \mathbb{C}^{M \times N}$:
- Assume known:
 - $r_s := \langle \boldsymbol{a}, \boldsymbol{v}_s \rangle \in \mathbb{C}$
 - $\mathbf{r}_s := |r_s|$

Unknowns:

•
$$y_k := \langle \boldsymbol{a}, \boldsymbol{\xi}_k \rangle \in \mathbb{C}$$

•
$$\mathbf{y}_k := |y_k|$$

•
$$\mathbf{y}_{ks}^2 := |\langle \boldsymbol{a}, \boldsymbol{\xi}_k - \boldsymbol{v}_s \rangle|^2$$

= $|\boldsymbol{y}_k - r_s|^2$

$$\begin{bmatrix} \mathbf{y}_{k1}^2 - \mathbf{r}_1^2 \\ \vdots \\ \mathbf{y}_{kS}^2 - \mathbf{r}_S^2 \end{bmatrix} = \begin{bmatrix} -2r_1^T & 1 \\ \vdots & \vdots \\ -2r_S^T & 1 \end{bmatrix} \begin{bmatrix} y_k \\ \mathbf{y}_k^2 \end{bmatrix}$$

(Interpreting complex numbers as vectors in \mathbb{R}^2)

- *K* known calibration signals: $\boldsymbol{\Xi} = [\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_K] \in \mathbb{R}^{N \times K}$
- $S \geq 3$ known anchor signals: $V = [v_1, \dots, v_S] \in \mathbb{R}^{N \times S}$
- For each row $\boldsymbol{a} \in \mathbb{C}^N$ of $\boldsymbol{A} \in \mathbb{C}^{M \times N}$:
- Assume known:
 - $r_s := \langle \boldsymbol{a}, \boldsymbol{v}_s \rangle \in \mathbb{C}$
 - $\mathbf{r}_s := |r_s|$
- Unknowns:

•
$$y_k := \langle \boldsymbol{a}, \boldsymbol{\xi}_k \rangle \in \mathbb{C}$$

•
$$\mathbf{y}_k := |y_k|$$

•
$$\mathbf{y}_{ks}^2 := |\langle \boldsymbol{a}, \boldsymbol{\xi}_k - \boldsymbol{v}_s \rangle|^2$$

= $|\boldsymbol{y_k} - r_s|^2$

- *K* known calibration signals: $\boldsymbol{\Xi} = [\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_K] \in \mathbb{R}^{N \times K}$
- $S \geq 3$ known anchor signals: $V = [v_1, \dots, v_S] \in \mathbb{R}^{N \times S}$
- For each row $\boldsymbol{a} \in \mathbb{C}^N$ of $\boldsymbol{A} \in \mathbb{C}^{M \times N}$:
- Assume known:
 - $r_s := \langle \boldsymbol{a}, \boldsymbol{v}_s \rangle \in \mathbb{C}$
 - $\mathbf{r}_s := |r_s|$
- Unknowns:

•
$$y_k := \langle \boldsymbol{a}, \boldsymbol{\xi}_k \rangle \in \mathbb{C}$$

•
$$\mathbf{y}_k := |y_k|$$

$$\begin{array}{l} \bullet \ \ \mathbf{y}_{ks}^2 := |\left< \boldsymbol{a}, \boldsymbol{\xi}_k - \boldsymbol{v}_s \right>|^2 \\ = |\boldsymbol{y}_k - r_s|^2 \end{array}$$

$$oldsymbol{W} = egin{bmatrix} y_1 & \cdots & y_K \ \mathbf{y}_1^2 & \cdots & \mathbf{y}_K^2 \end{bmatrix} \qquad \underbrace{E}_{\mathbb{R}^{S imes K}} = \underbrace{M}_{\mathbb{R}^{S imes 3}} \underbrace{W}_{\mathbb{R}^{3 imes K}} \qquad \Longrightarrow \qquad \widehat{W} = M^\dagger E$$

Top two rows of \widehat{W} are real and imaginary parts of $(a^* \Xi) \in \mathbb{C}^{1 \times K}$ Repeat for all rows of A and obtain Y in $Y = A\Xi$ without knowing A!

• For row *a* of *A* for all (q, s) measure squared distances between anchor points on the complex plane: $|\langle \boldsymbol{a}, \boldsymbol{v}_q - \boldsymbol{v}_s \rangle|^2 = |r_q - r_s|^2$

- For row *a* of *A* for all (q, s) measure squared distances between anchor points on the complex plane: $|\langle \boldsymbol{a}, \boldsymbol{v}_q \boldsymbol{v}_s \rangle|^2 = |r_q r_s|^2$
- Find a realization of points on complex plane satisfying distances
 - Can be done using multidimensional scaling (MDS)

- For row *a* of *A* for all (q, s) measure squared distances between anchor points on the complex plane: $|\langle \boldsymbol{a}, \boldsymbol{v}_q \boldsymbol{v}_s \rangle|^2 = |r_q r_s|^2$
- Find a realization of points on complex plane satisfying distances
 - Can be done using multidimensional scaling (MDS)

- For row *a* of *A* for all (q, s) measure squared distances between anchor points on the complex plane: $|\langle \boldsymbol{a}, \boldsymbol{v}_q \boldsymbol{v}_s \rangle|^2 = |r_q r_s|^2$
- Find a realization of points on complex plane satisfying distances
 - Can be done using multidimensional scaling (MDS)

- For row *a* of *A* for all (q, s) measure squared distances between anchor points on the complex plane: $|\langle \boldsymbol{a}, \boldsymbol{v}_q \boldsymbol{v}_s \rangle|^2 = |r_q r_s|^2$
- Find a realization of points on complex plane satisfying distances
 - Can be done using multidimensional scaling (MDS)

- For row *a* of *A* for all (q, s) measure squared distances between anchor points on the complex plane: $|\langle \boldsymbol{a}, \boldsymbol{v}_q \boldsymbol{v}_s \rangle|^2 = |r_q r_s|^2$
- Find a realization of points on complex plane satisfying distances
 - Can be done using multidimensional scaling (MDS)

- For row *a* of *A* for all (q, s) measure squared distances between anchor points on the complex plane: $|\langle \boldsymbol{a}, \boldsymbol{v}_q \boldsymbol{v}_s \rangle|^2 = |r_q r_s|^2$
- Find a realization of points on complex plane satisfying distances
 - Can be done using multidimensional scaling (MDS)

- For row *a* of *A* for all (q, s) measure squared distances between anchor points on the complex plane: $|\langle \boldsymbol{a}, \boldsymbol{v}_q \boldsymbol{v}_s \rangle|^2 = |r_q r_s|^2$
- Find a realization of points on complex plane satisfying distances
 - Can be done using multidimensional scaling (MDS)

- For row *a* of *A* for all (q, s) measure squared distances between anchor points on the complex plane: $|\langle \boldsymbol{a}, \boldsymbol{v}_q \boldsymbol{v}_s \rangle|^2 = |r_q r_s|^2$
- Find a realization of points on complex plane satisfying distances
 - Can be done using multidimensional scaling (MDS)

- For row *a* of *A* for all (q, s) measure squared distances between anchor points on the complex plane: $|\langle \boldsymbol{a}, \boldsymbol{v}_q \boldsymbol{v}_s \rangle|^2 = |r_q r_s|^2$
- Find a realization of points on complex plane satisfying distances
 - Can be done using multidimensional scaling (MDS)

Experimental verification on optical hardware

• Wirtinger flow algorithm to reconstruct image, x, from optical measurements, $|Ax|^2$, using learned $A \in \mathbb{C}^{M \times N}$

Experimental verification on optical hardware

• Wirtinger flow algorithm to reconstruct image, x, from optical measurements, $|Ax|^2$, using learned $A \in \mathbb{C}^{M \times N}$

 Using the FFT method to solve *Y* = *A*Ξ for *A* is more efficient as signal dimension increases

Summary

- Numerical interferometery enables rapid measurement phase retrieval
- Learning transmission matrices is a linear problem instead of a quadratic one with measurement phase retrieval
- 6.2 minutes vs. 3.3 hours
- Even with noisy optical measurements, transmission matrices can be learned and used for imaging

Check out our paper for more details and link to code